ST7789 Driver for MicroPython
This is a fork of devbis' st7789_mpy module from https://github.com/devbis/st7789_mpy.
[bookmark: _GoBack]I modified the original driver for one of my projects by adding support for display rotation, scrolling and drawing text using 8 and 16 bit wide bitmap fonts. Included are 12 bitmap fonts derived from classic pc text mode fonts and a couple of example programs that run on the TTGO T-Display.
This is a work in progress.
-- Russ
Overview
This is a driver for MicroPython to handle cheap displays based on ST7789 chip.
[image: ST7789 display photo]
It supports both 240x240 and 135x240 variants of displays.
It is written in pure C, so you have to build firmware by yourself. Only ESP8266 and ESP32 are supported for now.
Building instruction
Prepare build tools as described in the manual. You should follow the instruction for building MicroPython and ensure that you can build the firmware without this display module.
Clone this module alongside the MPY sources:
$ git clone https://github.com/devbis/st7789_mpy.git
Go to MicroPython ports directory and for ESP8266 run:
$ cd micropython/ports/esp8266
for ESP32:
$ cd micropython/ports/esp32
And then compile the module with specified USER_C_MODULES dir
$ make USER_C_MODULES=../../../st7789_mpy/ all
If you have other user modules, copy the st7789_driver/st7789 to the user modules directory
Upload the resulting firmware to your MCU as usual with esptool.py (See MicroPython docs for more info)
Working examples
This module was tested on ESP32 and ESP8266 MCUs.
You have to provide machine.SPI object and at least two pins for RESET and DC pins on the screen for the display object.
ESP 8266

import machine
import st7789
spi = machine.SPI(1, baudrate=40000000, polarity=1)
display = st7789.ST7789(spi, 240, 240, reset=machine.Pin(5, machine.Pin.OUT), dc=machine.Pin(4, machine.Pin.OUT))
display.init()
For ESP32 modules you have to provide specific pins for SPI. Unfortunately, I was unable to run this display on SPI(1) interface. For machine.SPI(2) == VSPI you have to use
· CLK: Pin(18)
· MOSI: Pin(23)
Other SPI pins are not used.
ESP32

import machine
import st7789
spi = machine.SPI(2, baudrate=40000000, polarity=1, sck=machine.Pin(18), mosi=machine.Pin(23))
display = st7789.ST7789(spi, 240, 240, reset=machine.Pin(4, machine.Pin.OUT), dc=machine.Pin(2, machine.Pin.OUT))
display.init()
I couldn't run the display on an SPI with baudrate higher than 40MHZ
Methods
· st7789.ST7789(spi, width, height, reset, dc, cs, backlight, rotation)
required args:
 `spi` spi device
 `width` display width
 `height` display height
optional args:
 `reset` reset pin
 `dc` dc pin
 `cs` cs pin
 `backlight` backlight pin
 `rotation` 0-0 degrees, 1-90 degrees, 2-180 degrees, 3-270 degrees
This driver supports only 16bit colors in RGB565 notation.
· ST7789.fill(color)
Fill the entire display with the specified color.
· ST7789.pixel(x, y, color)
Set the specified pixel to the given color.
· ST7789.line(x0, y0, x1, y1, color)
Draws a single line with the provided color from (x0, y0) to (x1, y1).
· ST7789.hline(x, y, length, color)
Draws a single horizontal line with the provided color and length in pixels. Along with vline, this is a fast version with reduced number of SPI calls.
· ST7789.vline(x, y, length, color)
Draws a single horizontal line with the provided color and length in pixels.
· ST7789.rect(x, y, width, height, color)
Draws a rectangle from (x, y) with corresponding dimensions
· ST7789.fill_rect(x, y, width, height, color)
Fill a rectangle starting from (x, y) coordinates
· ST7789.blit_buffer(buffer, x, y, width, height)
Copy bytes() or bytearray() content to the screen internal memory. Note: every color requires 2 bytes in the array
· ST7789.text(font, s, x, y[, fg, bg])
Write text to the display using the specified font with the coordinates as the upper-left corner of the text. The foreground and background colors of the text can be set by the optional arguments fg and bg, otherwise the foreground color defaults to WHITE and the background color defaults to BLACK. See the fonts directory for example fonts and the utils directory for a font conversion program. Currently has issues with characters > 127.
· ST7789.width()
Returns the current logical width of the display. (ie a 135x240 display rotated 90 degrees is 240 pixels wide)
· ST7789.height()
Returns the current logical height of the display. (ie a 135x240 display rotated 90 degrees is 135 pixels high)
· ST7789.rotation(r)
Set the rotates the logical display in a clockwise direction. 0-Portrait (0 degrees), 1-Landscape (90 degrees), 2-Inverse Portrait (180 degrees), 3-Inverse Landscape (270 degrees)
Also, the module exposes predefined colors: BLACK, BLUE, RED, GREEN, CYAN, MAGENTA, YELLOW, and WHITE
Helper functions
· color565(r, g, b)
Pack a color into 2-bytes rgb565 format
· map_bitarray_to_rgb565(bitarray, buffer, width, color=WHITE, bg_color=BLACK)
Convert a bitarray to the rgb565 color buffer which is suitable for blitting. Bit 1 in bitarray is a pixel with color and 0 - with bg_color.
This is a helper with a good performance to print text with a high resolution font. You can use an awesome tool https://github.com/peterhinch/micropython-font-to-py to generate a bitmap fonts from .ttf and use them as a frozen bytecode from the ROM memory.

image1.jpeg

