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Einleitung 

 

Bei den alten Hochkulturen Mesopotamiens und Ägyptens bildeten sich schon recht früh 
komplexe Rechenverfahren aus. Ganz bewusst spreche ich hier von Verfahren, denn die 
überlieferten Quellen zeigen im Wesentlichen nur den Weg zum Ergebnis; eine tiefer gehen-
de Reflexion, wie sie etwa im antiken Griechenland viele Jahrhunderte später begonnen 
wurde, ist nur selten zu erkennen. Bei den Ägyptern wurden die Rechenverfahren in erster 
Linie benutzt 

 bei der Buchführung von Palästen und Tempelgütern, 
 bei der Zuteilung von Brot- und Bier-Rationen für die Arbeiter (Damit wurden übli-

cherweise die Löhne bezahlt.), 
 bei der Aufteilung von Geländen (Nach der Nilflut war meist eine neue Zuteilung er-

forderlich.), 
 bei der Planung von Gebäuden, Statuen und Bildern. 

In diesem Skript sollen zunächst das ägyptische Zahlensystem und einige grundlegende Re-
chenverfahren für natürliche (d. h. ganze positive) Zahlen dargestellt werden. Danach wer-
den wir zeigen, wie die Ägypter mit Brüchen umgegangen sind. Von entscheidender Bedeu-
tung ist hier, dass die Ägypter im Wesentlichen nur Stammbrüche (d. h. Brüche, deren Zähler 
1 ist) kannten.  

An einigen Stellen hat es sich angeboten, Aufgaben aus dem Papyrus Rhind und dem Papyrus 
Moskau vorzustellen. Im Original sind sie in hieratischer Schrift verfasst; hier werden sie hie-
roglyphisch wiedergegeben. Dabei folgt dem Hieroglyphentext stets die Angabe von weniger 
geläufigen Vokabeln (Zahlen bei diesen Angaben verweisen auf die Seitenzahl in [4].), eine 
Transliteration (inkl. grammatischer Erläuterungen) und eine Übersetzung. 

Ich wünsche Ihnen viel Erfolg und viel Spaß bei der Lektüre von „Ägyptisches Rechnen“. 

Georg Heinrichs 

        Felsinschrift aus dem dritten Jahrtausend v. Chr. 



Kapitel 1 Ganze Zahlen und einfache Rechenoperationen 
 
 
Das ägyptische Zahlensystem ist wie das heute von uns benutzte Zahlensystem dezimal; da-
rin unterscheidet es sich z. B. von dem römischen und dem babylonischen System. Allerdings 
handelt es sich um kein Stellenwertsystem (wie wir es heute benutzen); vielmehr werden 
die Einer, die Zehner, die Hunderter u.s.w. durch verschiedene Zeichen dargestellt:  

Einer werden durch einen senkrechten Strich (Z1) dargestellt:      (wa), 

Zehner durch eine Fesselklammer (V20):      (mD) 

Hunderter durch eine Schnurrolle (V1, nicht zu verwechseln mit Z7!):     (S.t) 

Tausender durch eine Lotus-Pflanze (M12):       (xA) 

Zehntausender durch einen Finger (D50):      (DbA) 

Hunderttausender durch eine Kaulquappe (I8):       (Hfn) 

Millionen durch einen Gott mit erhobenen Armen und Palmrispe auf dem Kopf (C11):      (HH) 

Das Zeichen für eine Million konnte auch für unbestimmte „sehr große“ Zahlen stehen.  

Vielfache der Einheit wurden dargestellt, indem das zugehörige Zeichen entsprechend oft 
wiederholt wurde. Dabei sorgte der Schreiber mit einem Zeilenwechsel dafür, dass in der 
Regel nicht mehr als 4 gleiche Zahlzeichen nebeneinander stehen. Zahlzeichen mit einem 
höheren Wert stehen gewöhnlich vor den Zahlzeichen mit einem niedrigeren Wert: 

 

Hier sind die Zahlen 32, 276 und 405291 dargestellt; bei den hohen Lotus-Hieroglyphen wur-
de die oben erwähnte Regel gebrochen . 

 

Multiplikation mit 10 

Da die ägyptischen Zahlen in einem Zehnersystem dargestellt sind, ist die Multiplikation mit 
10 einfach: Die einzelnen Zahlzeichen müssen dazu nur durch das Zahlzeichen der nächst 
höheren Einheit ersetzt werden. Bei unserem zweiten Beispiel erhalten wir als Ergebnis einer 
solchen Multiplikation: 

 



Kapitel 1 Ganze Zahlen und einfache Rechenoperationen 
 
 
Addition zweier Zahlen 

Auch die Addition zweier Zahlen ist recht einfach. Als Beispiel betrachten wir die Addition 
der Zahlen 32 und 276 (s. o.). Dazu schreiben wir von beiden Zahlen die Zeichen mit demsel-
ben Stellenwert nebeneinander. Zunächst erhalten wir: 

 

Hier stellen fest, dass es insgesamt zehn      -Zeichen gibt; das entspricht aber der Zahl 100. 
Wir ersetzen diese zehn Zeichen durch ein weiteres     -Zeichen (Übertrag) und erhalten 
schließlich als Ergebnis die Zahl 308: 

 

 

Multiplikation mit 2 (Verdopplung einer Zahl) 

Auch die Multiplikation mit 2 ist nicht schwierig; dazu verdoppeln wir jeden Stellenwert und 
beachten dabei einen möglichen Übertrag. (Letztlich wird die zu multiplizierende Zahl nur zu 
sich selbst addiert. Mit anderen Worten: Wir können diese Multiplikationsaufgabe auch auf 
eine Addititionsaufgabe zurückführen.) Als Beispiel schauen wir uns die Aufgabe 308 mal 2 
an: 2 mal 8 Einer ergeben 16 Einer, also 1 Zehner und 6 Einer. Dazu kommen jetzt noch die 2 
mal 3 Hunderter. Das Ergebnis ist: 

 

 

 



Kapitel 2 Multiplikation und Division von zwei ganzen Zahlen 
 
 
Die Ägypter führten die Multiplikation auf die im letzten Kapitel bereits behandelten einfa-
chen Grundoperationen Verdoppeln und Addieren zurück. Wie sie dabei vorgingen, wollen 
wir zunächst an einem Beispiel zeigen. Zum einfacheren Verständnis des Rechenprinzips 
schreiben wir die Zahlen dabei in unserem dezimalen Stellenwertsystem. 

Die Zahlen 13 und 3 sollen multipliziert werden. Es gilt also, das 13-fache von 3 zu finden. 
Dazu benutzten die Ägypter folgendes Schema: 

Ziel: 13   
1 3  
2 6  
4 12  
8 24  

13 39  
 

Unter die Kopfzeile schrieben die Ägypter zunächst das 1-Fache von 3. Dann wurden diese 
beiden Werte 1 und 3 von Zeile zu Zeile schrittweise verdoppelt: In der ersten Spalte stehen 
dann die Zahlen 1, 2, 4… und in der zweiten Spalte steht dann das 1-fache, das 2-fache, das 
4-fache… von 3. Bei dem 8-fachen beendet man das Verdoppeln, weil im nächsten Schritt 
schon das 16-fache stehen würde; das ist aber schon größer als das 13-fache. 

Nun werfen wir einen Blick auf die erste Spalte: Welche dieser Zahlen ergeben in der Summe 
13? Wir markieren die entsprechenden Zeilen mit einem Punkt ( ). Jetzt brauchen wir nur 
noch die markierten Zahlen aus der zweiten Spalte addieren, und schon haben wir das Er-
gebnis. 

Wie wir sehen, haben wir nichts anderes gemacht als Verdoppeln und Addieren. Natürlich 
kann man die Faktoren auch vertauschen; die Multiplikationstabelle ist dann sogar einfa-
cher: 

Ziel: 3   
1 13  
2 26  

3 39  
 

Für die Funktionsweise dieses Rechenverfahrens ist entscheidend, dass sich jede Zahl als 
Summe von Zweierpotenzen 1= 20, 2=21, 4=22, 8=23, … schreiben lässt. In der Tat stellt die 
Folge der markierten ( ) und nicht markierten ( ) Zeilen aus der ersten Tabelle die Zahl 13 
als Binärzahl dar:     = 11012 

Nachdem wir das Prinzip jetzt kennen, betrachten wir nun ein etwas schwierigeres Beispiel: 
Wir wollen das Produkt von 35 und 52 berechnen. 

 



Kapitel 2 Multiplikation und Division von zwei ganzen Zahlen 
 
 
 Ziel: 35   
1 52  
2 104  
4 208  
8 416  
16 832  
32 1664  

35 1820  
 

Eine Division können wir nun durchführen, indem wir das Verfahren von der Multiplikation 
umkehren. Betrachten wir zunächst ein einfaches Beispiel. 207 soll durch 23 geteilt werden. 
Die Frage ist hier also: Das Wieviel-Fache von 23 ist 207? Die Tabelle dazu sieht dann so aus: 

 Ziel: 207  
1 23  
2 46  
4 92  
8 184  

9 207  
 
Diesmal hören wir bei 184 (also beim 8-fachen) auf, weil bei einer weiteren Verdopplung die 
Zahl 207 überschritten würde. Wir markieren die 8-fach-Zeile. Jetzt schauen wir uns die dar-
über liegende Zeile an: Ist die Summe von 184 und 92 kleiner oder gleich 207? Nein, also 
markieren wir diese Zeile nicht. Ähnliches gilt für die darüber liegende Zeile. Addieren wir 
hingegen 23 zu 184, erhalten wir die Zahl 207; das Ergebnis der Division ergibt sich dann aus 
den Zahlen der ersten Spalte, die markiert wurden: 1 + 8 = 9. 

Schauen wir uns noch eine schwierigere Divisionsaufgabe an: 1170 : 45 

  Ziel: 1170  
1 45  
2 90  
4 180  
8 360  
16 720  

26 1170  
 
Dass sich in diesen beiden Beispielen der Quotient genau als Summe von einigen der darun-
ter stehenden Zahlen darstellen lässt, ist natürlich darauf zurückzuführen, dass bei unseren 
bisherigen Aufgaben die Division „aufgeht“, d. h. kein Rest übrig bleibt. Bei der Aufgabe 
1182:45 hätten wir die gleichen Summanden 720, 360 und 90 gefunden; es wäre aber ein 
Rest von 12 übrig geblieben: Das Ergebnis wäre damit „26 Rest 12“. Im Kapitel 7 und den 
folgenden Kapiteln werden wir darlegen, wie man diesen Rest durch einen „ägyptischen 
Bruch“ darstellen kann.



Kapitel 3 Der Papyrus Rhind 
 
 
Bei dem Papyrus Rhind handelt es sich um den umfangreichsten 
Papyrus mit mathematischem Inhalt. Er wurde in Theben gefunden 
und 1858 von dem Archäologen Henry Rhind erworben. Heute ist er 
im Britischen Museum ausgestellt. Auf der Webseite [1] kann man 
dieses Dokument mit zahlreichen Teilaufnahmen in hoher Auflö-
sung betrachten. 

Der Papyrus wurde ca. 1650 v. Chr. (also während der Zeit, als die 
Hyksos in Nordägypten herrschten) geschrieben. Der Schreiber na-
mens Ahmose (s. u.) stützte sich dabei auf ältere Quellen, vermut-
lich aus der Zeit von Amenemhet III. 

Der Papyrus Rhind behandelt sowohl arithmetische als auch geo-
metrische Probleme. Diese sind meist praktisch orientiert. So geht 
es hier z. B. um das Aufteilen von Brotrationen an Arbeiter (Der 
Lohn wurde mit Waren wie Brot und Bier ausgezahlt!) oder der er-
neuten Einteilung von Feldflächen nach einer Nilflut. Daneben gibt 
es aber auch Untersuchungen zur geometrischen Reihe und zur 
Flächenberechnung eines Kreises. 

Der Text ist - wie damals üblich - in hieratischer Schrift geschrieben. 
Um dem Leser die Möglichkeit zu geben, die eine oder andere Pas-
sage des Papyrus selbst in ägyptischer Sprache zu studieren, gebe 
ich sie hier (und im Folgenden) in Hieroglyphenschreibweise wie-
der. Dabei greife ich auf die Quellen [2] und [3] zurück. 

 

Hieroglyphentext des Vorworts (nach [2]) 

 

Abb. 1: Vorwort 



Kapitel 3 Der Papyrus Rhind 
 
 
Vokabeln 

 
tp-Hsb Berechnung (603, 1000) 

  
hAj herabsteigen, betreten (517) 

 
snk dunkel sein (782) 

 
StA geheim (907) 

,  
spXr kopieren (751) 

 
Sfdw Papyrusrolle (884) 

 
m-sn.t-r nach Art von (771) 

,  
js, js.w alt, die Alten (114) 

 
hAw Zeit (518) 

 
jn + Nomen + Partizip Es ist …, der …(Spaltsatz) 

 
snn Aktenstück, Verzeichnis (779) 

 

Transkription mit grammatischen Hinweisen 

tp-Hsb n hAj.t (Infinitiv) m x.wt rx nt.t nb.t snk.t (fem. Partizip Aktiv) StA.t nb.t jw jst grt 

spXr.n=tw Sfdw pn m rnp.t zp 33 Abd 4 Ax.t [xr Hm n njswt] bjt(j) Aa-wsr-Ra dj anx 

m-sn.t-r zS.w n js.w jry (Partizip Passiv) m Haw […nj-m]Aa.t[-Ra] jn zS JaHms(j).w spXr snn pn 

 

Übersetzung 

Berechnung vom Eindringen in die Dinge, das Wissen von allem, das existiert (wörtlich: ist) 
und dunkel ist, und alles Geheime. (Neuer Gedanke:) Diese Papyrusrolle wurde kopiert im 
Regierungsjahr 33, Monat 4 der Überschwemmungszeit [unter der Majestät des Königs von] 
Unterägypten „Groß-an-Stärke-ein-Ra“, Leben gegeben, in der Art von (besser: nach der Vor-
lage von) Schriften von den Alten, die gemacht worden sind in der Zeit [von Amenemhet III, 
s. die folgende Bemerkung]. Es ist der Schreiber Ahmose, der diese Sammlung niederge-
schrieben hat. 

Bemerkung: Die in der Transliteration angegebenen Ergänzungen würden auf den Thronnamen „Der-zur-Maat-
gehört-ein Ra“ hinweisen. In diesem Fall handelt es sich um einen Pharao der 12. Dynastie, der besser unter 
seinem Eigennamen Amenemhet (III) bekannt ist. Damit ginge Ahmoses Kopie auf einen Papyrus aus dem Zeit-
raum etwa zwischen 1842 und 1795 v. Chr. zurück. 



Kapitel 4 Eine geometrische Reihe 
 
 
Das Problem 79 des Papyrus Rhind (vgl. Abb. 2) 
zeigt zwei Rechenwege zur Berechnung von 7 + 
72 + 73 + 74 + 75. Diese Summe hat die allgemei-
ne Form Sn = q + q2 + q3 + …+ qn, wobei q beliebig 
und n eine natürliche Zahl ist. Eine solche Sum-
me bezeichnen Mathematiker als geometrische 
Reihe. Der Text beginnt eigentlich mit der rech-
ten Spalte. Wir schauen uns aber zuerst die linke 
Spalte an, da sie einfacher zu interpretieren ist. 
Mit Hieroglyphen geschrieben lautet sie (nach [2] u. [3]): 

 

Vokabeln 

 
mjw Kater (343) 

 
pnw Maus (293) 

 
bd.t Emmer (283) 

,  
HoA.t 

Heqat bzw. Hekat, Scheffel  
[Raummaß für Getreide etc.] (607) 

,  
dmD 

zusammenfügen, summieren; Ge-
samtheit, Summe (1052) 

 

Übersetzung 

Häuser  7 
Katzen  49 
Mäuse  343 
Emmer  2301 (Fehler, s. u.) 
Hekat  16807 
Summe 19607 
 

Abb. 2: Problem 79 aus dem Papyrus Rhind 



Kapitel 4 Eine geometrische Reihe 
 
 
Die Ausgangszahl 7 wurde hier immer wieder mit 7 multipliziert; die ersten 5 Zahlen stellen 
also die Potenzen 71, 72, …, 75 dar. Wer die einzelnen Ergebnisse überprüft, stellt fest, dass 
Ahmose beim Kopieren allerdings ein Fehler unterlaufen ist: Statt 2301 müsste es eigentlich 
2401 heißen; tatsächlich wurde der nächste Wert 16807 auf der Grundlage des korrekten 
Wertes berechnet. 

An dieser Stelle fragt man sich vielleicht, wie die-
ser Abschreibfehler geschehen konnte, kann man 
die Hieroglyphen für 100 (im Gegensatz vielleicht 
zu denen von 1) deutlich erkennen. Nun, die Zah-
len 100, 200, 300, 400, … sehen in der hierati-
schen Schreibweise doch wesentlich anders aus 
als in der Hieroglyphendarstellung (vgl. Abb. 3). 
Hier unterscheiden sich die Zahlen 300 und 400 
tatsächlich nur durch einen einzigen kleinen Strich!    Abb. 3: Hieratische Zahlzeichen 

Die Erläuterungen Häuser, Katzen, … werden unterschiedlich interpretiert. Einerseits erin-
nern sie an Rechengeschichten, z B. die von Leonardo Fibonacci von Pisa (ca. 1200 n. Chr.): 

Sieben alte Weiber gehen nach Rom; 
jede von ihnen führt sieben Esel mit sich; 
auf jedem Esel sind sieben Säckchen; 
in jedem Säckchen sind sieben Brote; 
und jedes Brot hat sieben Messerchen; 
und jedes Messerchen hat sieben Scheiden. 
Es wird nach der Summe aller erwähnten Dinge gefragt. 
 

Eisenlohr deutet die Erläuterungen als allgemeine Bezeichnungen für die erste, zweite, … 
Potenz einer Zahl (vgl. [3], S. 184f). Dass es Ahmose hier tatsächlich um mehr geht als eine 
„Rechengeschichte“, zeigt sich bei der Betrachtung der rechte Spalte von Abb. 2. Wenden 
wir uns also dieser Spalte zu: Mit Hieroglyphen geschrieben lautet sie (nach [2] u. [3]): 

 

 



Kapitel 4 Eine geometrische Reihe 
 
 
Vokabeln 

 
wa 1, ein (193) 

 
jm.t-pr Testament, Hausrat, Anwesen (49) 

 

Transliteration 

wa.t jm.t-pr (?) 
1 2801 
2 5602 
4 11204 
dmD 19607 
 

Übersetzung 

Ein Haushalt(?) 
1  2801 
2  5602 
4  11204 
Summe 19607 
 

Sofort ist klar: Hier wird das Produkt aus 2801 und 7 gebildet. Damit stoßen wir auf dasselbe 
Ergebnis wie bei der vorhergehenden Rechnung. Offensichtlich soll es sich hier um eine an-
dere Möglichkeit handeln, die Summe 7 + 72 + 73 + 74 + 75 zu berechnen. Rätselhaft ist nur, 
wie Ahmose auf die Zahl 2801 gestoßen ist. Eisenlohr (vgl. [3]) geht davon aus, dass Ahmose 
die folgende Regel (aus einer anderen Quelle) benutzte: 

Teile das um 1 verminderte Glied der letzten Potenz (bei uns 75 = 16807) durch das um 1 ver-
minderte Glied der ersten Potenz (7). Multipliziere das Ergebnis mit der ersten Potenz. 

Mathematikern ist diese Regel als Summen-
formel für die geometrische Reihe Sn = q + 
q2 + q3 + …+ qn bekannt: 

𝑆௡ = 𝑞 ∙  
(௤೙ି ଵ)

௤ିଵ
   

Setzen wir für q den Wert 7 und für n den 
Wert 5 ein, erhalten wir tatsächlich den 
Wert 2801.  

 

=  𝑞ଶ +  𝑞ଷ + ⋯ +  𝑞௡ାଵ − 𝑞 − 𝑞ଶ − ⋯ −  𝑞௡ 

= 𝑞௡ାଵ − 𝑞 = 𝑞 ∙ (𝑞௡ − 1) 

Herleitung der Summenformel: 

Wir multiplizieren zunächst Sn mit (q-1):  

     𝑆௡ ∙ (𝑞 − 1)  =  𝑆௡  ∙ 𝑞 − 𝑆௡    

Nach Division durch (q - 1) erhalten wir 

𝑆௡ = 𝑞 ∙  
(௤೙ି ଵ)

௤ିଵ
  . 



Kapitel 4 Eine geometrische Reihe 
 
 
Nach David Reimer (vgl. [5]) ist es allerdings auch möglich, dass Ahmose eine andere Regel 
angewandt hat, nämlich:  

Berechne zunächst die Potenzreihe 7 + 72 + 73 + 74, addiere dann 1 dazu und multipliziere das 
Ergebnis mit 7. 

Wir testen diese Strategie aus: Die Summe 7 + 72 + 73 + 74 ist 2800; wir addieren 1 dazu und 
erhalten die Zahl 2801 (s.o.!). Mit 7 multipliziert ergibt das wieder 19607. 

Auf den ersten Blick sieht dies einfacher aus als die von Eisenlohr angegebene Strategie; im-
merhin müssen wir hier keine Division ausführen. Dafür muss allerdings zunächst der Wert 
2800 für die Potenzreihe 7 + 72 + 73 + 74 berechnet werden, und dies ist aufwändiger als die 
Berechnung der einzelnen Potenzen.  

Die formale Begründung für die gerade vorgestellte Vorgehensweise ist übrigens einfacher 
als bei der Summenformel; sie ergibt sich durch einfaches Ausmultiplizieren und anschlie-
ßendes Umsortieren: 

(𝑞 + 𝑞ଶ + ⋯ +  𝑞௡ିଵ  +   1) ∙ 𝑞 =  𝑞ଶ+𝑞ଷ + ⋯ + 𝑞௡  + 𝑞 = 𝑞 + 𝑞ଶ+𝑞ଷ + ⋯ + 𝑞௡ 

Wie Ahmose nun wirklich gerechnet hat, werden wir hier nicht beurteilen können. Interes-
sant ist dennoch, dass überhaupt Potenzreihen betrachtet werden – und dafür sogar die 
eine oder andere hilfreiche Strategie bekannt war. 

 



Kapitel 5 Volumen eines Pyramidenstumpfes 
 
 
Das Volumen eines Pyramidenstumpfes 
(vgl. Abb. 4) zu berechnen, stellt schon 
ein anspruchsvolles geometrisches Prob-
lem dar. Heutzutage wird zur Lösung 
dieses Problems einfacherweise eine 
Formel benutzen: 

𝑉 =
ℎ

3
 ∙ (𝑎ଶ + 𝑎 ∙ 𝑏 +  𝑏ଶ) 

In diese Formel setzt man die angegebe-
nen Werte für die Kanten (a = 4 und b = 2) 
sowie für die Höhe (h = 6) ein und berechnet dann den Wert des Terms. Eine solche abstrak-
te Vorgehensweise war den Ägyptern nicht bekannt; sie stellten ihre Lösung dar, indem sie 
für ein konkretes Beispiel die Vorgehensweise in ihren einzelnen Schritten angaben. 

Das Papyrus Moskau zeigt sehr schön, wie sie hierbei vorgingen. Dieses Papyrus stammt aus 
der Nähe von Theben und wurde 1893 durch den russischen Ägyptologen Wladimir 
Semjonowitsch Golenischtschew angekauft. Heute befindet es sich im Puschkin-Museum für 
bildende Künste in Moskau. 

Als Beispiel hatte der Schreiber dieses Papyrus den Pyramidenstumpf aus Abb. 4 gewählt: 
Die Querschnittsflächen sind jeweils Quadrate, das untere mit der Seitenlänge 4, das obere 
mit der Seitenlänge 2; die Höhe des Pyramidenstupfes ist 6 (Einheiten werden hier nicht an-
gegeben; sie sind für die Rechnung nicht wesentlich!). 

Unsere Formel liefert sehr rasch das Volumen für diesen Körper: 

𝑉 =
6

3
 (4ଶ + 4 ∙ 2 +  2ଶ) =  2 ∙ (16 + 8 + 4) = 2 ∙ 28 = 56 

Das Papyrus Moskau ist (wie auch das Papyrus Rhind) in hieratischer Schrift geschrieben. Ich 
gebe den Text hier in Hieroglyphenschrift an. Dabei habe ich den Zeilenumbruch im Gegen-
satz zum Original am Inhalt orientiert; die Zeilennummern entsprechen also nicht denen des 
Originals. 

In dem Text taucht an zwei Stellen die Seitenansichten von einem 
Pyramidenstumpf als Hieroglyphe auf. Da mir diese nicht als Type 
zur Verfügung steht, habe ich sie mit der Abkürzung PS darge-
stellt. 

Als Erläuterung gibt der Schreiber noch eine Skizze mit Neben-
rechnungen an (s. Abb. 5); um die im Hieroglyphentext benutzte 
Leserichtung einzuhalten, habe ich die Originaldarstellung hori-
zontal gespiegelt. 

 

Abb. 4: Pyramidenstumpf (Problem 14 des Papyrus Moskau) 

Abb. 5: Nebenrechnungen 



Kapitel 5 Volumen eines Pyramidenstumpfes 
 
 
Hieroglyphentext (nach [2]): 

 

Vokabeln 

 
tp-n-jrj.t (Mathematisches) Verfahren (997) 

  
stwtj Volumen, Fläche (845) 

 
Xrw Unterseite; Basis (693f) 

 
Hrw Oberseite (596) 

 
jrj=k … m jw quadriere … (101.29) 

 
xpr werden; hier: ergeben (638f.18) 

 
oAb vermehren, verdoppeln (916) 

 
r-3 1/3 (mehr dazu im nächsten Kapitel) 

 
n(j) sw + Nomen zu ihm gehörig ist … (454) 

 

Grammatik (Die sDm.xr=f-Form) 

Das Suffix xr einer sDm.xr=f-Form kennzeichnet eine notwendige Aktion. jrj.xr=k bedeutet 
also „Du musst [so] rechnen“ oder „Rechne [so]“. 



Kapitel 5 Volumen eines Pyramidenstumpfes 
 
 
Transliteration 

1. tp-n-jrj.t [Pyramidenstumpf] 
2. mj Dd n=k [Pyramidenstumpf] n 6 n stwtj r 4 Hr Xrw r 2 Hr Hrw 
3. jrj.xr=k jrj=k 4 pn m jw xpr 16 
4. jrj.xr=k oAb=k 4 xpr 8 
5. jrj.xr=k jrj=k 2 pn m jw xpr 4 
6. jrj.xr=k dmD pA 16 Hna pA 8 Hna pA 4 xpr 28 
7. jrj.xr=k jrj=k 1/3 n 6 xpr 2 
8. jrj.xr=k jrj=k 28 sp zn xpr 56 
9. mk n(j)-sw 56 gmj=k nfr  

Übersetzung 

1. Verfahren (für einen) Pyramidenstumpf 
2. Wenn dir mitgeteilt wird ein Pyramidenstumpf von 6 hinsichtlich der Höhe bei 4 an 

der Unterseite (Unterstein) bei 2 an der Oberseite, [dann]… 
3. Rechne so: Du quadrierst diese 4, ergibt 16. 
4. Rechne so: Du verdoppelst 4, ergibt 8. 
5. Rechne so: Du quadrierst diese 2, ergibt 4. 
6. Rechne so: Füge zusammen (d. h. addiere) diese (bekannte) 16 zusammen mit dieser 

(bekannten) 8 und mit dieser (bekannten) 4, ergibt 28. 
7. Rechne so: Du machst 1/3 von 6, ergibt 2. 
8. Rechne so: Du machst 28 2-mal, ergibt 56. 
9. Sieh, zu ihr (Bezug: Pyramide) gehörig ist 56, du wirst es gut finden. 

 

Der Bezug zu unserer Volumenformel lässt sich leicht herstellen: 

1. Quadriere 4, ergibt 16 → a2  
2. Verdopple 4, d. h. multipliziere 4 mit 2, ergibt 8 → 𝑎 ∙ 𝑏 
3. Quadriere 2, ergibt 4 → b2)  
4. Addiere diese 3 Werte → Ausdruck in der Klammer von unserer Volumenformel 

5. Bilde ein Drittel von 6, ergibt 2 → ௛
ଷ
 

6. Multipliziere den Klammerausdruck mit dem letzten Ergebnis  → ௛
ଷ

 ∙ (… ) 

Wir sehen: Das entspricht genau der Rechnung mit unserer Volumenformel! Leider liefert 
uns der Schreiber keine Begründung für den von ihm beschriebenen Rechenweg. Dass dieser 
Rechenweg damals überhaupt bekannt war, ist schon erstaunlich, wenn man bedenkt, dass 
eine Herleitung zwar schon mit Kenntnissen aus der Mittelstufe möglich, aber nicht trivial ist. 
Wer sich davon überzeugen möchte, kann die folgende Herleitung der Volumenformel stu-
dieren.  



Kapitel 5 Volumen eines Pyramidenstumpfes 
 
 

 

 

 



Kapitel 6 Brüche 
 
 

Wenn wir an Brüche denken, haben wir Ausdrücke wie z. B.  ଷ
ସ
, ହ

ଶଵ
 oder ସଷ

ଷ଴
 vor Augen. Solche 

Brüche gab es bei den Ägypter nicht. Sie kannten nur ganz bestimmte Brüche, z. B. ଵ
ଶ
, ଵ

଻
 oder 

ଵ

ଵହ଺
. Derartige Brüche, die eine 1 als Zähler haben, bezeichnet man in der Mathematik als 

Stammbrüche. Die Ägypter kannten im Wesentlichen nur solche Stammbrüche. Auf die we-
nigen Ausnahmen werden wir am Ende dieses Kapitels noch zu sprechen kommen. 

Wie wurden diese Brüche nun hieroglyphisch geschrieben? Die folgende Tabelle gibt einige 
Beispiele an: 

Hieroglyphe Transliteration Bedeutung 

 

gs 1

2
 

 

r-4 1

4
 

 

r-24 1

24
 

 

gs r-12 1

2
+  

1

12
=  

6

12
+  

1

12
=  

7

12
 

 

r-3 r-210 1

3
+  

1

210
=  

71

210
 

 

Mit Ausnahme des Bruchs ଵ
ଶ
 werden alle anderen Brüche mit Hilfe des Wortes         (rA, 

deutsch: Teil), dargestellt. Unter dem Zeichen         wird der Nenner in der üblichen Weise 
geschrieben. Werden mehrere Stammbrüche hintereinander geschrieben wie im 4. und 5. 
Beispiel, bezeichnet dies die Summe dieser Brüche. Wir sehen, dass sich hier (in unserer 
Schreibweise) Brüche ergeben, welche keine Stammbrüche sind. An dieser Stelle verraten 
wir schon: Alle „unsere“ Brüche lassen sich als Summe von Stammbrüchen darstellen. Damit 
ist klar: Alle „unsere“ Brüche können auch mit Hilfe der ägyptischen Hieroglyphen dargestellt 
werden. 

Versuchen wir einmal, den Bruch ଻

ଵ଴
 in die Summe von zwei Stammbrüchen zu zerlegen. In 

diesem Fall ist das ganz einfach: ଻

ଵ଴
=  

ହ

ଵ଴
+  

ଶ

ଵ଴ 
=

ଵ

ଶ
+  

ଵ

ହ
 . Auch bei dem Bruch ଵଷ

ସଶ
 ist es nicht 

allzu schwer: ଵଷ

ସଶ
=

଻

ସଶ
+  

଺

ସଶ
=  

ଵ

଺
+  

ଵ

଻
 . Im Allgemeinen wird eine derartige Zerlegung aber 

nicht immer so einfach sein. Wir werden uns später noch einmal um dieses Problem küm-
mern. 

Eine solche Zerlegung ist keineswegs eindeutig. So stellt auch ଵ
ସ

+
ଵ

ଶ଼
+

ଵ

ସଶ
  den Bruch ଵଷ

ସଶ
 dar. 

Tatsächlich hätten die Ägypter diese Zerlegung sogar der zuerst angegebenen Zerlegung vor-
gezogen. Sie achteten nämlich darauf, dass bei der Zerlegung 

1. keine gleichen oder nahe beieinander liegenden Nenner auftauchen, 
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2. Stammbrüche mit den größeren Nennern weiter rechts stehen. 

Was ist der Sinn der ersten Regel? Schauen wir uns die zweite Zerlegung an, dann sehen wir 

auf einen Blick, dass der erste Summand ଵ
ସ
 schon ein guter Näherungswert von ଵଷ

ସଶ
 ist; schließ-

lich sind die beiden Nenner 28 und 42 deutlich größer als der Nenner 4. In der Tat weicht der 

erste Summand weniger als 20% vom Wert ଵଷ

ସଶ
 ab. Bei der ersten Zerlegung hingegen beträgt 

die relative Abweichung ca. 46%.  

Die beiden Regel haben also ein ganz praktischen Grund: Sie sorgen dafür, dass schon der 1. 
Summand meist eine gute Schätzung für den Gesamtwert darstellt.  

In unserem Zahlensystem befolgen wir übrigens eine ähnliche Strategie, wenn wir Dezimal-
zahlen benutzen: Bei der Zahl 0,635 wissen wir sofort, dass 0,6 ein guter Näherungswert für 
diese Zahl ist, weil die nächsten Stellen nur noch für ein paar Hundertstel und Tausendstel 
stehen. 

Kommen wir nun auf die oben schon erwähnten Ausnahme-Brüche zu sprechen.  

 
steht für ଶ

ଷ
 (wurde häufig benutzt) 

 
steht für ଷ

ସ
 (wurde sehr selten benutzt) 

 

Wie nützlich der Bruch ଶ
ଷ
 ist, zeigt die Zerlegung von dem Bruch ହ

଺
 . Natürlich kann diese Zer-

legung auch mit Stammbrüchen erfolgen: ହ
଺

=
ଵ

ଶ
+

ଵ

ଷ
 . Diese verstößt aber gegen Regel 1 

(s.o.). Tatsächlich ist ଵ
ଶ
 nur eine sehr schlechte Näherung für ହ

଺
 : Die Abweichung beträgt ca. 

67%. Benutzen wir hingegen die Zerlegung  ହ
଺

=
ଶ

ଷ
+

ଵ

଺
 , so beträgt die Abweichung nur noch 

25%. Tatsächlich benutzen die Ägypter den Bruch ଶ
ଷ
 sehr häufig; mehr dazu in Kapitel 9.  

Für die bisherigen Erläuterungen war es ganz zweck-
mäßig, die ägyptischen Brüche mit Hilfe der von uns 
gewohnten Schreibweise mit dem Bruchstrich anzu-
geben. In Zukunft wollen wir nun eine Schreibweise 
benutzen, welche der ägyptischen etwas näher 
kommt; ich habe sie von [5] übernommen. In der 
rechten Tabelle sehen Sie einige Beispiele. Der Quer-
strich soll dabei an das        - Zeichen erinnern. 

Ferner werden wir im Folgenden Zahlen wie 13തതതത oder 152തതതതത als echte Brüche und Zahlen wie 

3 ന8ത  oder 5 13തതതത 67തതതത als unechte Brüche bezeichnen. 

 

2ത 1

2
 

3ത 1

3
 

13തതതത 1

13
 

250തതതതത 1

250
 

3ധ 2

3
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Halbieren von Brüchen 

In dem Kapitel „Multiplikation und Division von zwei ganzen Zahlen“ hatten wir schon gese-
hen, dass das Verdoppeln von Zahlen eine wichtige Rolle spielt. Jetzt schauen wir uns das 
Halbieren von Zahlen an. Das Halbieren entspricht einer Multiplikation mit 2ത.  
 
Zunächst kümmern wir uns um das Halbieren von ganzen Zahlen: Um die Zahl 246 zu halbie-
ren, zerlegen wir sie geschickt: 
 
246 = 200 + 40 + 6 

Die Halbierung erfolgt nun summandenweise: 

2ത ∙ 246 = 100 + 20 + 3 = 123 

Die Zerlegung muss nicht unbedingt stellenweise erfolgen. Um die Zahl 328 zu halbieren, 
können wir z. B. auch folgende Zerlegung vornehmen: 

328 = 200 + 120 + 8 

2ത ∙ 328 = 100 + 60 + 4 = 164 

Nun halbieren wir Brüche.  Wir beginnen mit dem Halbieren eines echten Bruchs. Dazu 
braucht man nur den Nenner verdoppeln: 

2ത  ∙  7ത =  14തതതത  

Bei unechten Brüchen gehen wir summandenweise vor: 

2ത  ∙ 4 3ത = 2ത  ∙ 4 +  2ത  ∙  3ത = 2 6ത 

2ത  ∙ 19 13തതതത = 2ത  ∙ 18 + 2ത  ∙ 1 +  2ത  ∙  13തതതത = 9 2ത 26തതതത 

 

Verdoppeln von Brüchen 

Beim Verdoppeln eines echten Bruches muss der Nenner halbiert werden: 

2 ∙ 24തതതത  = 12തതതത 

Bei einem unechten Bruch verdoppeln wir summandenweise: 

2 ∙ 38 4ത 52തതതത = 76 2ത 26തതതത  

Sie ahnen es schon: Es gibt ein Problem, wenn der Nenner nicht gerade ist. Mit unserer bis-
herigen Regel kommen wir hier nicht weiter.  

Hier benutzten die Ägypter Tabellenwerke mit fertigen Lösungen für die Verdopplung von 
Brüchen mit ungeraden Nennern; man bezeichnet eine solche Tabelle auch als 2/n-Tabelle. 
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Im Papyrus Rhind werden diese Lösungen der Reihe nach für die Brüche mit den Nennern 3, 
5, 7, 9, 11, …, 101 aufgeführt. Der Schreiber begnügt sich dabei nicht, die Lösungen anzuge-
ben, sondern er liefert auch stets eine Begründung.  

Für die Verdopplung von 5ത gibt er z. B. die Zerlegung 3ത 15തതതത an. Bevor wir uns Ahmoses Be-
gründung anschauen, überprüfen wir sein Ergebnis zunächst mit „unserer“ Bruchrechnung: 

3ത 15തതതത =  
1

3
+  

1

15
=  

5

15
+  

1

15
=  

6

15
=  

2

5
= 2 ∙  5ത  

Die angegebene Zerlegung kann man auch 
graphisch verdeutlichen: In der folgenden 
Zeichnung sehen wir eine Tafel Schokola-
de, welche in 5 vertikale Riegel zerlegt ist. 
Jeder dieser Riegel stellt ein Fünftel der 
Schokolade dar. 2 dieser Riegel sind grau 
ausgefüllt; sie stellen 2 ∙ 5ത  dar. Nun wer-
den noch zwei waagerechte Schnitte vor-
genommen – und zwar so, dass die Scho-
kolade in insgesamt 15 gleich große Stü-
cke zerlegt wird. 6 davon gehören zu unseren zwei Riegeln. Diese Stücke sortieren wir nun 
um wie in der Abbildung 6 durch eine rote Schraffierung angezeigt. Die untere Zeile bildet 
dann ein Drittel der Schokolade (3ത), das einzelne Stück ein Fünfzehntel (15തതതത). 

Ahmoses Begründung sieht im Prinzip so aus: 

Einer Fünftel (Ziel: 2)  
1 5 = 3 + 2  
3ത  1 3ധ  

15തതതത  3ത   

𝟑ഥ 𝟏𝟓തതതത  𝟏 + 𝟑ഥ + 𝟑ന = 𝟏 + 𝟏 = 𝟐   
 
Die Strategie dabei ist, dass man solche Fünftel findet, deren Summe gerade 2 ergibt.  

Bei dem 2-fachen von 7ത sieht das bei Ahmose im Wesentlichen so aus: 

Einer Siebtel (Ziel: 2)  
1 7  
2ത  3 2ത   
4ത  1 2ത 4ത   
28തതതത  4ത   

𝟒ഥ 𝟐𝟖തതതത  𝟏 + 𝟐ഥ + 𝟒ഥ + 𝟒ഥ = 𝟏 + 𝟐ഥ + 𝟐ഥ = 𝟏 + 𝟏 = 𝟐   
 

    Abb. 6: Verschiedene Zerlegungen 
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An dieser Stelle fragt man sich: Wie kommt man darauf, 1/28 Einer zu wählen? Nun, werfen 
wir einen Blick auf die darüber liegende Zeile, so bemerken wir, dass zum Erreichen des Wer-
tes 2 bei den Siebteln gerade noch ein Viertel fehlt. An den entsprechenden Wert für die 
Einer gelangte Ahmose mit Hilfe der folgenden Hilfstabelle: 

Einer Siebtel (Ziel: 𝟒ഥ)  
1 7  
2 14  
4 28  
𝟐𝟖തതതത  𝟒ഥ    

 
Hierbei wurde im letzten Schritt folgende Tausch-Regel angewandt: Vertauscht man die 
Zahlen einer Zeile, muss man die Zahlen durch ihre Kehrwerte ersetzen.  

Halten wir fest: Das 2-fache von 7ത ist 4ത 28തതതത . 

 

Schauen wir uns gleich noch ein weiteres Beispiel an: Was ist das 2-fache von 13തതതത ? 

 Einer 13-tel (Ziel: 2)  
1 13  
2ത  6 2ത  
4ത  3 4ത  
8ത  1 2ത 8ത   
 52തതതത 4ത (vgl. Hilfstabelle)  
104തതതതത  8ത   

𝟖ഥ  𝟓𝟐തതതത 𝟏𝟎𝟒തതതതതത 𝟏 𝟐ഥ 𝟖ഥ 𝟒ഥ 𝟖ഥ = 𝟏 𝟐ഥ 𝟒ഥ 𝟒ഥ = 𝟏 𝟐ഥ 𝟐ഥ = 𝟐   
 
Hilfstabelle: 

Einer 13-tel (Ziel: 𝟒ഥ)  
1 13  
2 26  
4 52  
𝟓𝟐തതതത  𝟒ഥ    

 
Das 2-fache von 13തതതത ist also 8ത  52തതതത 104തതതതത . 

Auf der nächsten Seite ist die 2/n-Tabelle des Papyrus Rhind vollständig angegeben. Es muss 
aber an dieser Stelle darauf hingewiesen werden, dass auch andere Ergebnisse (natürliche 
mit demselben Wert) möglich sind. So kann man z. B. rasch nachprüfen, dass das 2-fache von 
7ത auch durch 4ത 28തതതത angegeben werden kann. 
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Mancher hat sich vielleicht schon die Frage gestellt, ob jedes 2-fache eines (echten) Bruches 
mit ungeradem Nenner sich als Summe von Stammbrüchen darstellen lässt. Diese Frage 
kann mit einem klaren Ja beantwortet werden. Mit ein wenig Algebra ist es sogar recht ein-
fach, zu jeder ungeraden Zahl n eine Darstellung mit nur zwei Stammbrüchen zu finden: 

Als ersten Nenner n1 wählen wir (n+1)/2. Dieser Wert ist eine ganze Zahl, weil n+1 gerade ist. 

Der zweite Nenner n2 ist dann gleich ௡∙(௡ାଵ)

ଶ
 . 

 

  

2/n - Tabelle vom Papyrus Rhind (nach [6]) 

2/3  = 1/2 + 1/6 2/5   = 1/3 + 1/15 2/7  = 1/4 + 1/28 

2/9  = 1/6 + 1/18 2/11  = 1/6 + 1/66 2/13 = 1/8 + 1/52 + 1/104 

2/15 = 1/10 + 
1/30 

2/17  = 1/12 + 1/51 + 1/68 2/19 = 1/12 + 1/76 + 1/114 

2/21 = 1/14 + 
1/42 

2/23  = 1/12 + 1/276 2/25 = 1/15 + 1/75 

2/27 = 1/18 + 
1/54 

2/29  = 1/24 + 1/58 + 1/174 + 
1/232 

2/31 = 1/20 + 1/124 + 1/155 

2/33 = 1/22 + 
1/66 

2/35  = 1/30 + 1/42 2/37 = 1/24 + 1/111 + 1/296 

2/39 = 1/26 + 
1/78 

2/41  = 1/24 + 1/246 + 1/328 
2/43 = 1/42 + 1/86 + 1/129 + 
1/301 

2/45 = 1/30 + 
1/90 

2/47  = 1/30 + 1/141 + 1/470 2/49 = 1/28 + 1/196 

2/51 = 1/34 + 
1/102 

2/53  = 1/30 + 1/318 + 1/795 2/55 = 1/30 + 1/330 

2/57 = 1/38 + 
1/114 

2/59  = 1/36 + 1/236 + 1/531 
2/61 = 1/40 + 1/244 + 1/488 + 
1/610 

2/63 = 1/42 + 
1/126 

2/65  = 1/39 + 1/195 2/67 = 1/40 + 1/335 + 1/536 

2/69 = 1/46 + 
1/138 

2/71  = 1/40 + 1/568 + 1/710 
2/73 = 1/60 + 1/219 + 1/292 + 
1/365 

2/75 = 1/50 + 
1/150 

2/77  = 1/44 + 1/308 
2/79 = 1/60 + 1/237 + 1/316 + 
1/790 

2/81 = 1/54 + 
1/162 

2/83  = 1/60 + 1/332 + 1/415 + 
1/498 

2/85 = 1/51 + 1/255 

2/87 = 1/58 + 
1/174 

2/89  = 1/60 + 1/356 + 1/534 + 
1/890 

2/91 = 1/70 + 1/130 

2/93 = 1/62 + 
1/186 

2/95  = 1/60 + 1/380 + 1/570 2/97 = 1/56 + 1/679 + 1/776 

2/99 = 1/66 + 
1/198 

2/101 = 1/101 + 1/202 + 1/303 + 
1/606  
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Zum Beweis setzen wir diese Ausdrücke in 1/n1 + 1/n2 ein: 

1

𝑛 + 1
2

+  
1

𝑛(𝑛 + 1)
2

=  
2𝑛

𝑛(𝑛 + 1)
+

2

𝑛(𝑛 + 1)
=  

2(𝑛 + 1)

𝑛(𝑛 + 1)
=

2

𝑛
 

 

Brüche mit ganzen Zahlen multiplizieren 

Wir wollen nun einen (unechten) Bruch mit einer ganzen Zahl multiplizieren; die Aufgabe 
lautet: 3 7ത  ∙ 6 . Zur Lösung benutzen wir eine Reihe der oben erwähnten Regeln; insbeson-
dere greifen wir auch auf die 2/n-Tabelle zurück.  

 

 

Ganze Zahlen dividieren 

Im Kapitel 2 hatten wir bereits Divisionsaufgaben betrachtet; allerdings hatten wir uns auf 
solche Divisionen beschränkt, die ohne Rest aufgehen. Genauer gesagt: Wir hatten die Divi-
sion durchgeführt und den Rest nicht weiter behandelt. 

Jetzt schauen wir uns die Aufgabe 13 : 42 an; es ist klar, dass wir nun um den „Rest“ nicht 
herumkommen.  

Bei der folgenden Tabelle gehen wir von 42 42-teln, d. h. von 1 Einer, aus und versuchen 
schrittweise zu 13 42-teln zu gelangen: 

Einer 42-tel (Ziel: 13)  
1 42  
42തതതത  1  
21തതതത  2  
14തതതത 42തതതത  4  
7ത 21തതതത  8  

𝟕ഥ 𝟏𝟒തതതത 𝟐𝟏തതതത 𝟒𝟐തതതത 𝟒𝟐തതതത 13  
 
Unser Resultat (der Ausdruck für die Einer in der letzten Zeile) lässt sich (u. A. mit Hilfe der 
2/n-Tabelle) noch vereinfachen: 

𝟕ഥ 𝟏𝟒തതതത 𝟐𝟏തതതത 𝟒𝟐തതതത 𝟒𝟐തതതത =  𝟕ഥ 𝟏𝟒തതതത 𝟐𝟏തതതത 𝟐𝟏തതതത = 𝟕ഥ 𝟏𝟒തതതത 𝟏𝟒തതതത 𝟒𝟐തതതത =   𝟕ഥ 𝟕 ഥ 𝟒𝟐തതതത =  𝟒ഥ 𝟐𝟖തതതത 𝟒𝟐തതതത  

Ziel: 6   
1 3 7ത    
2 6 4ത 28തതതത   
4 12 2ത 14തതതത   

6 𝟏𝟖 𝟐ഥ 𝟒ഥ 𝟏𝟒തതതത 𝟐𝟖തതതത   vgl. Kap 11! 
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Fast übersieht man diesen kleinen Bereich am unteren 
Rand des Papyrus Rhind (Abb. 7). Dabei ist er sehr inte-
ressant, liefert er doch einen Hinweis darauf, wie man aus 
dem Durchmesser eines Kreises seinen Flächeninhalt (nä-
herungsweise) berechnen kann. 

Leider sind Ahmoses Erläuterungen hierzu sehr spärlich: 
Im Innern der Figur steht die Zahl 9 (vermutlich die Sei-
tenlänge des Quadrats) und daneben stehen zwei Rech-
nungen (vgl. Abb. 8). Darin wird 8 ∙ 8 bzw. 9 ∙ 9 ausgerechnet. 

 

Abb. 8: Problem 48 in Hieroglyphenschrift 

 

Wie kann man das deuten? Wenn man so will, wird hier tatsächlich eine Art Quadratur des 
Kreises vorgenommen: Ein Kreis mit einem Durchmesser von 9 Einheiten (in den Abbildun-
gen 7 u. 8 nicht eingezeichnet) wird in ein Quadrat eingepasst. Dieses Quadrat wird in 9 
gleich große Quadrate eingeteilt; und die 4 Quadrate in den Ecken werden jeweils durch eine 
Diagonale geteilt. (vgl. Abb. 9). Dadurch entsteht ein 
Achteck, dessen Fläche annähernd so groß ist wie die 
Kreisfläche. 

Die Fläche dieses Achtecks besteht aus 5 ganzen und 
4 halben Quadraten. Der Flächeninhalt dieses Acht-

ecks ist also 5 ∙ 3ଶ + 4 ∙
ଵ

ଶ
 ∙ 3ଶ = 45 + 18 = 63 Einhei-

ten groß. Ahmose geht davon aus, dass die Kreisflä-
che AK ein wenig größer ist als 63 Einheiten, nämlich 
64 Einheiten; damit ist sie genauso groß wie die Flä-
che eines Quadrats mit der Seitenlänge 8.  

Nun ist die Fläche AQ des den Kreis umschließenden 
Quadratrats gerade 81 Einheiten groß.  

Abb. 7: Problem 48 

Abb. 9: Skizze zum Problem 48 
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Vergrößert oder verkleinert man den Durchmesser des Kreises, verändert sich die Seitenlän-
ge des umschreibenden Quadrats entsprechend: Das Verhältnis der beiden Flächeninhalte AK 
und AQ wird aber immer dasselbe sein wie in dem beschriebenen Beispiel, nämlich 64:81. 

Somit gilt die folgende Regel: Der Quotient aus 64 und 81 gibt den Flächeninhalt eines Krei-
ses mit dem Durchmesser 1 an. Möchte man den Flächeninhalt eines Kreises mit dem 
Durchmesser d berechnen, dann muss man das Quadrat von d mit 64 multiplizieren und 
das Ergebnis davon durch 81 teilen. 

 

Berechnung der Fläche eines Kreises 

Nach dieser Regel wollen wir nun einmal den Flächeninhalt eines Kreises mit einem Durch-
messer von d = 2 Einheiten berechnen. Dabei werden wir unsere bisher erworbenen Kennt-
nisse über das Multiplizieren und das Dividieren ausnutzen. 

Erster Schritt: 2 quadrieren, Ergebnis 4 (Eine entsprechende Tabelle schenken wir uns hier!) 

Zweiter Schritt: 64 mit 4 multiplizieren 

 Ziel: 4   
1 64  
2 128  
4 256  

4 256  
 

Dritter Schritt: 256 durch 81 dividieren: 

Wir zerlegen zuerst 256 passend: 256 = 243 + 13 und rechnen dann zunächst 243:81 = 3. Die 
Berechnung von 13:81 erfordert mehr Aufwand: 

Einer 81-tel  Bemerkung 
1 81  durch 9… 
9ത  9  Es fehlen noch 4 bis zur 13 (Ziel); durch 9… 
81തതതത  1  verdoppeln mit n/2-Tabelle… 
54തതതത 162തതതതത  2  verdoppeln… 
27തതതത 81തതതത  4  die fehlenden 4 
𝟗ഥ 𝟐𝟕തതതത 𝟖𝟏തതതത   13  Ziel erreicht 

 
Der gesuchte Flächeninhalt ist also 3 9ത 27തതതത 81തതതത  Einheiten groß. Greifen wir einmal zum Ta-
schenrechner und ermitteln damit die zugehörige Dezimalzahl. Gerundet ist sie 3,160. Das ist 
bis auf eine Abweichung von etwa 0,6 % gerade der Wert der Kreiszahl π! Dieses Ergebnis ist 
nicht verwunderlich: Bei unserem Kreis handelte es sich ja schließlich um den Einheitskreis 
mit dem Radius r = d/2 = 1 Einheit. 



Kapitel 9 Der Bruch  
 
 

Bislang haben wir den Bruch 3ധ =  
ଶ

ଷ
 praktisch überhaupt nicht benutzt. Schaut man sich die 

Rechnungen der Ägypter an, so findet man diesen Bruch allerdings überraschend häufig. So 
taucht er allein bei den ersten 4 Begründungen zur 2/n-Tabelle des Ahmose schon dreimal 
auf (nämlich bei 2/5, 2/9 und 2/11). Nebenbei bemerkt: Weiter oben habe ich Ahmoses Be-

weis für die Zerlegung von 2/5 leicht abgeändert, so dass dort 3ധ nicht aufgetaucht ist. 

Wie gingen die Ägypter vor, wenn sie 3ധ von einer Zahl, z. B. 15, angeben sollten? Nun, sie 
überlegten sich: Welche Zahl und ihr Halbes dazu ergibt 15. In diesem Fall ist es sehr einfach: 
Die gesuchte Zahl ist 10; den 10 + die Hälfte von 10 ergibt 10 + 5 = 15. Für ganze Zahlen ist es 
sehr einfach, das Ergebnis anzugeben. Vielleicht hatten die Ägypter für diese Fälle folgende 
Tabelle im Kopf: 

𝒏  𝟐ഥ  ∙ 𝒏  𝒏 +  𝟐ഥ ∙ 𝒏  
2 1 3 
4 2 6 
6 3 9 
8 4 12 
… … … 
54 27 81 
56 28 84 
… … … 

 

So wie wir eine Teilungsaufgabe wie z. B. 56 : 8 blitzschnell bewältigen, indem wir die gelern-
te Multiplikationsaufgabe 7 mal 8 = 56 umkehren, so haben die Ägypter vielleicht genauso 

rasch für 3ധ mal 84 das Ergebnis 56 angeben können, indem sie aus dieser (gelernten) Tabelle 
die Zuordnung 56  84 umgekehrt haben. 

Soll nun das 3ധ – fache einer größeren Zahl bestimmt werden, kann man diese geschickt zer-

legen. Bei der Aufgabe 3ധ von 702 zerlegen wir zunächst 702 in 600 +90 +12. Die Rechnung ist 
dann: 

3ധ ∙ 702 =  3ധ ∙ 600 +  3ധ ∙ 90 + 3ധ ∙ 12 = 400 + 60 + 8 = 468 

Natürlich funktioniert das Verfahren so nur, wenn die gegebene Zahl aus der 𝑛 +  2ത ∙ 𝑛 - Rei-
he stammt, also ein Vielfaches von 3 ist. Wie gehen wir jetzt aber mit einer Zahl wie 703 um? 
Ganz einfach, wir benutzen dieselbe Zerlegung wie oben mit einem zusätzlichen Summan-

den 1 am Ende. Zu unserem Zwischenergebnis 468 müssen wir jetzt 3ധ  ∙ 1 = 3ധ addieren. Das 

Ergebnis ist somit 468 3ധ. 

Bei der Zahl 704 müsste man am Ende jetzt 3ധ  ∙ 2 addieren; das ist gerade 1 3ത. Insgesamt 

würden wir für  3ധ von 704 also das Ergebnis 469 3ത erhalten. 



Kapitel 9 Der Bruch  
 
 
Wenden wir uns nun dem 3ധ-fachen eines Bruchs zu, z. B. von 12തതതത. Für gerade Nenner – wie in 
diesem Fall - ist das noch einfach: Wir müssen lediglich den Nenner, um die Hälfte vergrö-
ßern. Das Ergebnis ist in unserem Fall dann 18തതതത . Mit anderen Worten: Die obige Tabelle kann 
jetzt „vorwärts“ auf den Nenner angewendet werden. 

Bei einem Bruch mit ungeradem Nenner benutzen wir die folgende Regel: Bilde von dem 
Bruch die Hälfte und addiere dazu ein Sechstel des Bruchs. Mit anderen Worten: Wir bilden 
einen Bruch mit dem doppelten Nenner und einen mit dem sechsfachen Nenner; die Ergeb-
nisse werden dann addiert. 

Ein Beispiel: 3ധ  ∙  13തതതത =  2 ∙ 13തതതതതതത + 6 ∙ 13തതതതതതത =  26 തതതത 78തതതത 

Zur Erklärung schreiben wir den mittleren Term einmal in der uns geläufigen Form und for-
men ihn um: 

1

2 ∙ 13
+  

1

6 ∙ 13
=  

3 + 1

6 ∙ 13
=  

4

6
 ∙

1

13
=  

2

3
∙

1

13
 

Schauen wir uns den Rechenweg rückwärts an, erkennen wir, wie die Regel funktioniert. 

Auch auf den Fall 3ധ  ∙  3ധ kann man die obige Regel anwenden: Zuerst bilden wir die Hälfte 

von 3ധ, das ist 3ത. Nun bilden wir noch ein Sechstel von 3ധ; das ist gleich einem Drittel von 3ത, 
also 3ത ∙ 3ത =  9ത. Das Ergebnis ist nun 3ത 9ത. 

Versuchen wir es jetzt einmal mit einer schwierigeren Aufgabe: 3ധ ∙ 7 3ധ 20തതതത  

Rechnung: 

3ധ ∙ 7 3ധ 20തതതത =  3ധ ∙ 6 +  3ധ ∙ 1 + 3ധ ∙ 3ധ + 3ധ ∙ 20തതതത = 4 + 3ധ + 3ത + 9ത + 30തതതത = 5 9ത 30തതതത     

 

Zum Abschluss die Rechnung von Ahmose zum 2/9-Problem: 

Einer Neuntel (Ziel: 2)  
1 9  
3ധ  6 !!! 
3ത  3  
6ത  1 2ത    
2 18  
18തതതത  2ത   

𝟔ഥ 𝟏𝟖തതതത  𝟏 𝟐ഥ + 𝟐ഥ = 𝟐   
 
Anscheinend war es für Ahmose naheliegender, erst die 2/3-Operation und anschließend die 
Halbierung durchzuführen, als direkt zu dritteln! 



Kapitel 10 Division durch 10 
 
 
Schon im Kapitel 1 hatten wir die Multiplikation mit 10 behandelt: Dabei werden die einzel-
nen Zahlzeichen durch das Zahlzeichen der nächst höheren Einheit ersetzt. Bei der Division 
verfahren wir genau umgekehrt: Hier werden die einzelnen Zahlzeichen durch das Zahlzei-
chen der nächst niedrigeren Einheit ersetzt: 

                                                : 10 =  

Problematisch ist es allerdings, wenn der Dividend auch Einer besitzt. In diesem Fall werden 
wir wieder eine Zerlegung vornehmen, z. B. 273 = 270 + 3. Die Division von 270 können wir 
dann wie oben dargestellt vornehmen. Für die Zahl 3 müssen wir den entsprechenden (un-
echten) Bruch finden. Tatsächlich hat unser Schreiber Ahmose schon vorgesorgt: dem Papy-
rus Rhind entnehmen wir den passenden Bruch der folgenden n/10-Tabelle. 

1 : 10 10തതതത  
2 : 10 5ത  
3 : 10 5ത 10തതതത  
4 : 10 3ത 15തതതത  
5 : 10 2ത  
6 : 10 2ത 10തതതത  
7 : 10 3ധ 30തതതത  
8 : 10 3ധ 10തതതത 30തതതത  
9 : 10 3ധ 5ത 30തതതത  

 

Die dritte Zeile gibt uns an: Das Ergebnis unsere Aufgabe 273 : 10 lautet 27 5ത 10തതതത . 

Beispielhaft wollen wir zeigen, wie man an den (unechten) Bruch für 7 : 10 gelangt: 

Einer Zehntel  Erläuterung 
1 10   
3ധ  6 3ധ    Es fehlt 3ത zur 7 (Ziel). 
10തതതത  1   
30തതതത  3ത   

𝟑ന 𝟑𝟎തതതത   𝟔 𝟑ന + 𝟑ഥ = 𝟕    
 

Bei Ahmose läuft die Begründung meist etwas anders ab: Zunächst wird das Ergebnis ange-
geben; anschließend wird die Probe gemacht, indem die angegebene Zahl mit 10 multipli-
ziert wird. Nebenbei: Dieselbe Strategie findet sich auch bei der 2/n-Tabelle. 

Für den Fall 9 : 10 habe ich den folgenden Originaltext (in Hieroglyphen) bei [3] gefunden (S. 
31f). Er vermittelt auch einen guten Eindruck darüber, wie stark die Ägypter sich an prakti-
schen Anwendungen orientierten. In diesem Fall geht es um die Verteilung von Broten. 

 

 



Kapitel 10 Division durch 10 
 
 
Hieroglyphentext (nach [3]): 

 

Vokabeln 

 
Htp Opfergaben, Speisen; hier: 

Brot(laibe) (610) 

 
wAH tp m 4 [r] zp 3 multipliziere 4 mit 3 (186.11) 

 

Transliteration mit Erläuterungen 

jr.t (Infinitiv) Htp 9 n z 10  

jr.t mj xpr jrj.xr=k (sDm.xr=f-Form) wAH (Infinitiv o. Imperativ) tp m 3ധ 5ത 30തതതത [r] zp 10   

 . 3ധ 5ത 30തതതത 

 .. 1 3ധ 10തതതത 30തതതത (2/n-Tabelle benutzt)  

 4 3 2ത 10തതതത  (weil 2 + 1 +  3ത 5ത 15തതതത = 3 2ത 10തതതത ist, s. u.) 

8 7 5ത  

dmD (Partizip Passiv oder Nomen) Htp 9 nt(j) (Relativpronomen, auch Pl.) pw (A-pw-Satz) 



Kapitel 10 Division durch 10 
 
 
Übersetzung 

9 Brotlaibe verteilen für 10 Leute 

Machen, wie (es) geschieht. Rechne so: multipliziere 2/3  1/5  1/30 mit 10: 

(Rechenschritte s. o.) 

Zusammengefügt [oder: Summe] 9 Brotlaibe, die es sind. 

 

Mancher wird sich bestimmt über einige Rechenschritte von Ahmose gewundert haben. Es 
sieht so aus, als ob Ahmose Kenntnisse über das Vereinfachen von (unechten) Brüchen 
kennt, die uns noch fehlen. Tatsächlich erkennt man im Papyrus Rhind bei der einen oder 
anderen Aufgabe an einigen Ergänzungen zur Rechentabelle, mit welchem Trick eine Verein-
fachung vorgenommen wurde. Einen dieser Tricks werden wir im nächsten Kapitel studieren. 
Dann wird uns auch klar werden, wie Ahmose zu den Gleichungen 

 3ത 5ത 15തതതത = 2ത 10തതതത und 

 3ധ 10തതതത 30തതതത + 5ത = 1  

gekommen sein könnte. 

 

Addieren, Multiplizieren und Dividieren in der ägyptischen Sprache 

Diese Begriffe gründen sich im Ägyptischen auf das Verb wAH; die Grundbedeutung davon ist: 
legen, stellen, hinsetzen (186). Speziell kann wAH auch für stapeln und hinzufügen stehen. 
wAH 5 Hr 10 bedeutet damit: 5 zu 10 hinzufügen bzw. addieren (186.10f). wAH tp [m] x bedeu-
tet: x vervielfachen (d. h. mit Hilfe der uns bekannten Verdopplungstabelle multiplizieren) 

wAH tp m 20 [r] zp 10 : die Zahl 20 10mal vervielfachen, d. h. verzehnfachen, also 20 mit 10 
multiplizieren. wAH tp m 5 r gmj.t 10 bedeutet wörtlich: 5 vervielfachen bis zum Finden von 
10 (Zielwert); dies entspricht gerade der Vorgehensweise für die Division (vgl. z. B. Kapitel 2). 
Die ägyptischen Begriffe für die Rechenarten sind nicht abstrakt wie unsere; vielmehr spie-
geln sie die Vorgehensweise (mit einer Tabelle) wieder. 

  

 

 



Kapitel 11 Unechte Brüche vereinfachen 
 
 
In den letzten Kapiteln haben wir schon immer wieder unechte Brüche vereinfacht; insbe-
sondere war es oft leicht gewesen, zwei gleiche echte Brüche zusammenfassen, z. B.: 

3ധ 6ത 6ത = 3ധ 3ത = 1  

7ത 14തതതത 21തതതത 42തതതത 42തതതത =  7ത 14തതതത 21തതതത 21തതതത = 7ത 14തതതത 14തതതത 42തതതത =   7ത 7 ഥ42തതതത =  4ത 28തതതത 42തതതത  

Dabei haben wir zwei gleiche Brüche wie z. B. 6ത 6ത  aufgefasst als 2 ∙ 6ത und die Regel für das 
Verdoppeln von Brüchen mit geradem Nenner benutzt (vgl. Kapitel 7). Hatten die beiden 
Brüche denselben ungeraden Nenner, dann wurde die 2/n-Tabelle benutzt (vgl. Kapitel 7). 

Bei den beiden Ausdrücken vom Ende des letzten Kapitels kommen wir damit aber nicht wei-
ter. Häufig hilft hier die folgende Idee: Stelle die Summanden nicht nur als Anteile von 1, 
sondern auch als Anteile einer anderen geeigneten Zahl dar. Schauen wir uns dazu den Aus-

druck 3ധ 5ത 10തതതത 30തതതത an: 

 

           30 

Einer 30-tel Erläuterung 
3ധ  20 20 Teile von 30 sind 2/3 
5ത  6 6 Teile von 30 sind 1/5 
10തതതത  3 3 Teile von 30 sind 1/10 
30തതതത  1 1 Teil von 30 sind 1/30 
1 20+6+3+1 = 30  30 Teile von 30 sind 1 

 
          : 30 
 

In diesem Fall erhalten wir 30 30-tel, also tatsächlich 1 Einer – wie bereits behauptet. Wich-
tig bei dieser Vorgehensweise ist, dass bei der neuen Aufteilung nur ganze Zahlen erschei-
nen. Meist bietet sich hierbei das kleinste gemeinsame Vielfache (kgV) der Nenner an. 

Bei dem Beispiel 3ത 5ത 15തതതത = 2ത 10തതതത vom Ende des letzten Kapitels ist es nicht ganz so einfach. 
Das kgV ist hier 15, also versuchen wir zunächst, die Brüche als 15-tel darzustellen: 

Einer 15-tel Erläuterung 
3ത  5 5 Teile von 15 sind 1/3 
5ത  3 3 Teile von 15 sind 1/5 
15തതതത  1 1 Teil von 30 ist 1/15 
?  9 9 Teile von 15 

 
Hier ist überhaupt nicht zu erkennen, wie das zu dem obigen Ergebnis führen soll. Versuchen 
wir es nun einmal mit der Einheit 30-tel: 



Kapitel 11 Unechte Brüche vereinfachen 
 
 
 

Einer 30-tel Erläuterung 
3ത  10 5 Teile von 30 sind 1/3 
5ത  6 6 Teile von 30 sind 1/5 
15തതതത  2 2 Teil von 30 ist 1/15 
 
𝟐ഥ  
𝟏𝟎തതതത  

18 
15 
3 

18 Teile von 30 sind: 
15 Teile von 30 plus  
3 Teile von 30 

 
Die entscheidende Idee besteht darin, die insgesamt 18 Teile so geschickt zu zerlegen, dass 
für die zugehörigen Einer tatsächlich Stammbrüche (oder ggf. auch 2/3) entstehen. Bei un-
serem ersten Versuch ist eine solche Zerlegung nicht möglich! 

Eine sinnvolle Zerlegung kann nur dann zustande kommen, wenn wir als neue Einheit das 
kgV der Nenner 3, 10, 15, 2 und 5 wählen. Die letzten beiden Nenner sind aber zu Beginn der 
Rechnung nicht bekannt. Es empfiehlt sich daher, so wie wir es gerade getan haben, zu-
nächst (versuchsweise) das kgV der gegebenen Nenner zu benutzen und anschließend gege-
benenfalls noch feinere Aufteilungen zu benutzen. 

Mit diesen Kenntnissen wollen wir nun für die Division 6:7 ein vereinfachtes Ergebnis finden: 

Einer 7-tel (Ziel: 6)  
1 7  
7ത  1  
4ത 28തതതത  2  
2ത 14തതതത  4  

𝟐ഥ 𝟒ഥ 𝟏𝟒തതതത 𝟐𝟖തതതത  6  
 
Dieses Ergebnis ist nicht sehr zufriedenstellend, zumal da der erste Bruch nur eine sehr 

schlechte Näherung für den Wert des Ergebnisses ist. Dieses ist auf jeden Fall größer als 3ധ. 

Wir wollen deswegen versuchen, das Ergebnis mit Hilfe von 3ധ darzustellen. Bei der Vereinfa-
chung unseres bisherigen Ergebnisses müssen wir daher den Faktor 3 mit in das kgV einbe-

ziehen: Dieses ist nun also 3  4  7 = 84. Damit erhalten wir das neue Ergebnis 𝟑ന 𝟕ഥ 𝟐𝟏തതതത: 

Einer 84-tel  
1 84  
2ത  42  
4ത  21  
14തതതത  6  
28തതതത  3  

 
𝟑ന 𝟕ഥ 𝟐𝟏തതതത  

72 = 56 + 16 
= 56 + 12 + 4 

56 ist 2/3 von 84 
Nur 2, 3, 4, 7 und 12 sind ge-
eignete Zerlegungskandidaten 
für den Rest 16.  



Kapitel 12 „Anstieg“ einer Pyramide (Seqed) 
 
 
Wie steil eine Straße oder ein Dachgiebel ist, wird in der 
Mathematik durch den Begriff Steigung quantitativ erfasst. 
Die Steigung der Strecke AB in dem blauen Dreieck aus Abb. 
10 beträgt zum Beispiel 2,5. Das lässt sich mit einem soge-
nannten Steigungsdreieck berechnen. Die horizontale Seite 
des Dreiecks bezeichnen wir im Folgenden immer mit x, die 
vertikale mit y. In unserem Fall ist x = 2 und y = 5 (Die Einhei-
ten lassen wir hier der Einfachheit halber weg.). Die Steigung 
m unserer Strecke AB wird berechnet durch den Quotienten 
aus y und x: 

𝑚 =
𝑦

𝑥
 

Setzen wir die angegebenen Werte in die Formel ein, so erhal-
ten wir den Wert 5/2 oder 2,5. Verlängern oder verkürzen wir 
die Strecke AB zu AB‘, wird das Steigungsdreieck entsprechend größer oder kleiner. Dabei 
ändert sich aber das Verhältnis y/x nicht; die Steigung hängt also nicht von der Größe des 
Dreiecks ab, so lange wir die Richtung bzw. Steilheit der Strecke beibehalten. Hätten wir ein 
Steigungsdreieck mit x = 1 benutzt, dann wäre y = m  x = 2,5  1 = 2,5. Die Steigung gibt also 
den y-Wert des Steigungsdreiecks an, wenn der x-Wert 1 ist. 

Wenn die Ägypter beschreiben wollten, wie steil z. B. eine Pyramide ist, benutzten sie eben-
falls Steigungsdreiecke. Allerdings betrachteten sie nicht das Verhältnis y/x, sondern das 
Verhältnis x/y. Dieses Verhältnis ist umso kleiner, je steiler die Pyramide ist. Stellen wir uns 
das Dreieck aus Abb. 10 als Teil einer Pyramide vor, dann hätte bei den gleichen Maßen wie 
eben der ägyptische „Steilheitsgrad“ den Wert 2/5 = 0,4.  

Nun benutzten die Ägypter für den x- und den y-Wert des Steigungsdreiecks unterschiedli-
che Einheiten: Der x-Wert wurde in „Handbreiten“ und der y-Wert in „Ellen“ angegeben. 
Dabei galt: 1 (königliche) Elle = 7 Handbreiten. Für das Dreieck aus Abb. 10 ergibt sich damit 

ein „Steilheitsgrad“ von ଶ∙଻

ହ
=  

ଵସ

ହ
= 2,8. Dieser Steilheitsgrad (mit der Einheit Handbreite pro 

Elle) wurde von den Ägyptern als Seqed bezeichnet (s. Vokabel-Verzeichnis weiter unten). 

Im Problem 56 berechnet Ahmose den „Steilheits-
grad“ einer Pyramide. In der Abb. 11 sind die Maße 
zu erkennen: Neben der Pyramide finden wir (hier 
durch einen roten Rahmen markiert) die hierati-
schen Zahlzeichen           und     . Sie stehen für die 
Zahl 200 + 50 = 250 und geben die Höhe der Pyrami-
de an. Darunter erkennt man die Zahlzeichen       
und            . Diese ergeben die Zahl 60 + 300 = 360, 
die Breite der Pyramidenbasis.  Beide Angaben er-
folgen hier in der Einheit Ellen; dies geht aus dem 

Abb. 10: Steigungsdreiecke 

Abb. 11: Ahmoses Skizze zum Problem 56 



Kapitel 12 „Anstieg“ einer Pyramide (Seqed) 
 
 
Ende der zweiten Zeile des Aufgabentextes hervor.   

Hieroglyphentext (nach [2] u. [3]): 

 

Vokabeln 

 
tp n njs 

Beispiel für das Berechnen 
(415f.6) 

 
mr Pyramide (364) 

 
Tb.t Sohle, Standfläche (1023f) 

  
wxA-Tb.t Grundkante der Pyramide (228) 

 
prj-m-wsj Höhe (einer Pyramide) (229) 

 
sod Seqed (s. o.), „Böschung“ (837) 

 
wAH tp m 5 r gmj.t 
10 

10 durch 5 teilen (vgl. Kapitel 10) 

 
mH Elle (Längenmaß von etwa 52,5 

cm) (374) 

,  
Ssp Handbreite (1 mH = 7 Ssp) (904) 

 

Transliteration 

Tp-n-njs mr 360 m wxA-Tb.t 250 m prj-m-wsj n=f jmj   

rdj=k (Subjunktiv) rx=j sqd=f jrj.xr=k 2ത n 360 xpr.xr=f m 180  jrj.xr=k waH tp m 250 r gmj.t 
180 xpr.xr 2ത 5ത 50തതതത n mH  

jw mH pn Ssp 7 jrj.Xr=k waH-tp m 7 [Rechnung s. u.] sod=f Ssp 5 25തതതത 



Kapitel 12 „Anstieg“ einer Pyramide (Seqed) 
 
 
Übersetzung (mit ergänzenden Erläuterungen in grauer Farbe) 

Beispiel für das Berechnen einer Pyramide 360 von der Basis (Grundkante) und 250 von der 
Höhe, die bei ihr ist. 

Lass mich erfahren (wörtlich: Du sollst dafür sorgen, dass ich erfahre…) ihren Seqed. Du 
musst machen 2ത von 360, wobei es (als) 180 ergeben muss. Du musst dividieren 180 durch 
250 (wörtlich: 250 vervielfachen, um 180 zu finden), wobei es 2ത 5ത 50തതതത von einer Elle(!) erge-
ben muss. 

Nun ist diese Elle 7 Handbreiten. Du musst mit 7 multiplizieren [wörtlich: 7 vervielfachen]: 

Elle Handbreite  Kommentar 
1 7  
2ത  3 2ത    
10തതതത  3ധ 30തതതത   7/10 aus n/10-Tabelle 
5ത  1 3ത 15തതതത    
50തതതത  10തതതത 25തതതത  30തതതത 150തതതതത =  25തതതത  s. u.  
𝟐ഥ 𝟓ഥ 𝟓𝟎തതതത  𝟒 𝟐ഥ 𝟑ഥ 𝟏𝟎തതതത 𝟏𝟓തതതത 𝟐𝟓തതതത = 𝟓 𝟐𝟓തതതത  s. u. 

 
Einer 150-tel 
30തതതത +  150തതതതത  5 + 1 
𝟐𝟓തതതത  6 

 
Um 4 2ത 3ത 10തതതത 15തതതത 25തതതത  zu vereinfachen, betrachten wir zunächst nur den Term 2ത 3ത 10തതതത 15തതതത. Das 
kgV dieser Nenner ist nämlich recht klein, nämlich 30. Würden wir  25തതതത  mit einbeziehen, hät-
te das kgV den Wert 150.  

Einer 30-tel 
2ത 3ത 10തതതത 15തതതത  15+10+3+2 
𝟏  30 

 
Sein Seqed ist 5 25തതതത Handbreiten. 

Es folgt die fehlende Rechnung für 180 : 250 bzw. 18 : 25. 

 Ziel: 18  Kommentar 
1 25  
25തതതത  1   
15തതതത 75തതതത   2  aus 2/n-Tabelle 
10തതതത 30തതതത 50തതതത 150തതതതത  4    
5ത 15തതതത 25തതതത 75തതതത  8  
3ത 15തതതത 10തതതത 30തതതത 15തതതത 75തതതത 50തതതത 150തതതതത  
= 2ത 10തതതത 25തതതത  

16 aus 2/n-Tabelle 
Vereinfachung s. u. 

𝟐ഥ 𝟏𝟎തതതത 𝟏𝟓തതതത 𝟐𝟓തതതത 𝟕𝟓തതതത  
= 𝟐ഥ 𝟓ഥ 𝟓𝟎തതതത 

18   
Vereinfachung s. u. 



Kapitel 12 „Anstieg“ einer Pyramide (Seqed) 
 
 
Vereinfachungen: 
 
Einer 150-tel 
3ത 10തതതത 15തതതത 15തതതത 30തതതത 50തതതത 75തതതത 150തതതതത  50 + 15 + 10 + 10 + 5 + 3 + 2 + 1 = 96 
𝟐ഥ 𝟏𝟎തതതത 𝟐𝟓തതതത   𝟗𝟔 = 𝟕𝟓 + 𝟏𝟓 + 𝟔  

 

Einer 150-tel 
10തതതത 15തതതത 25തതതത 75തതതത  15 + 10 + 6 + 2 = 33  
𝟓ഥ 𝟐𝟓തതതത   𝟑𝟑 = 𝟑𝟎 + 𝟑  

 

Ahmose hat hier nur die Vorgehensweise zur Berechnung des Seqed skizziert: Er benennt die 
notwendigen Rechenschritte und gibt auch ihr Ergebnis an. Allerdings wird lediglich bei der 
zweiten Rechnung der Rechenweg skizziert. Auf weitere Hinweise z. B. in Hinblick auf Verein-
fachungen verzichtet er vollends. Damit ist klar: Ahmose hat sich mit seinem Papyrus keines-
falls an Anfänger gewandt! 

Aber ein Anfänger, das sind Sie, lieber Leser, nun sicherlich nicht mehr! 
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